In collaboration with
Ki-Seok Kim(POSTECH) and Chanyoung Park(APCTP, POSTECH)

Emergent Metric from Kitaev Superconductor Model

Miok Park

Institute for Basic Science(IBS-CALDES), Pohang, S. Korea

Lemaitre workshop at Vatican Observartory
“Black Holes, Gravitational Waves and Spacetime Singularities”

May 11, 2017

\[a1610.07312\]
Motivation

- High Energy Physics View

- Condensed Matter Physics View

Motivation

- **High Energy Physics View**

 We have a fundamental question:

- **Condensed Matter Physics View**

Motivation

High Energy Physics View

We have a fundamental question:

What is a nature of spacetime?

Condensed Matter Physics View

1 D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 1207, 033 (2012)
Motivation

▶ High Energy Physics View

We have a fundamental question:
What is a nature of spacetime?

▶ Black Hole Thermodynamics

▶ Condensed Matter Physics View

1D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 1207, 033 (2012)

Motivation

High Energy Physics View

We have a fundamental question:
What is a nature of spacetime?

- Black Hole Thermodynamics
- RN-AdS/Van-deer Waals gas at critical point, \(^1\)

Condensed Matter Physics View

\(^1\)D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 1207, 033 (2012)

Motivation

▶ High Energy Physics View

We have a fundamental question:
What is a nature of spacetime?

▶ Black Hole Thermodynamics
▶ RN-AdS/Van-deer Waals gas at critical point,¹
▶ Holography(AdS/CMT e.g. holographic superconductor)²

▶ Condensed Matter Physics View

¹D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 1207, 033 (2012)
Motivation

High Energy Physics View

We have a fundamental question:
What is the nature of spacetime?

- Black Hole Thermodynamics
- RN-AdS/Van-deer Waals gas at critical point,
- Holography (AdS/CMT e.g. holographic superconductor)
- Can we construct a spacetime from many body system?

Condensed Matter Physics View

1 D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 1207, 033 (2012)
Motivation

➡️ High Energy Physics View

We have a fundamental question:

What is a nature of spacetime?

➡️ Black Hole Thermodynamics
➡️ RN-AdS/Van-deer Waals gas at critical point, \(^1\)
➡️ Holography(AdS/CMT e.g. holographic superconductor) \(^2\)
➡️ Can we construct a spacetime from many body system?

➡️ Condensed Matter Physics View

many strongly correlated system to study

\(^1\) D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 1207, 033 (2012)

Motivation

High Energy Physics View

- We have a fundamental question: What is the nature of spacetime?
- Black Hole Thermodynamics
- RN-AdS/Van-deer Waals gas at critical point,
- Holography (AdS/CMT e.g. holographic superconductor)
- Can we construct a spacetime from many body system?

Condensed Matter Physics View

Many strongly correlated system to study

“Could it provide a new tool to investigate these systems?”

1 D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 1207, 033 (2012)
Our Approach
from a transverse-Ising model to an emergent spacetime

D dimensional field theory \Rightarrow (D+1) dimensional bulk spacetime
Our Approach
from a transverse-Ising model to an emergent spacetime

D dimensional field theory \Rightarrow (D+1) dimensional bulk spacetime

We start with a transverse-Ising model.
Our Approach
from a transeverse-Ising model to an emergent spacetime

D dimensional field theory \Rightarrow (D+1) dimensional bulk spacetime

We start with a transverse-Ising model.

Why a transverse-Ising model?
Our Approach
from a transverse-Ising model to an emergent spacetime

D dimensional field theory ⇒ (D+1) dimensional bulk spacetime

We start with a transverse-Ising model.

Why a transverse-Ising model?
- Simple (no interacting term), but describe the superconductors
Our Approach
from a transeverse-Ising model to an emergent spacetime

D dimensional field theory $\Rightarrow (D+1)$ dimensional bulk spacetime

We start with a transverse-Ising model.

Why a transverse-Ising model?
- Simple (no interacting term), but describe the superconductors
- which is known as Kitaev superconductor model
D dimensional field theory ⇒ (D+1) dimensional bulk spacetime

We start with a transverse-Ising model.

Why a transverse-Ising model?

- Simple (no interacting term), but describe the superconductors
- which is known as Kitaev superconductor model
- Extract metric structure from Kitaev superconductor model by performing the RG process, where RG solution for a coupling parameter induces the background spacetime to be curved.
Process

1. Map the transverse-field Ising model to Kitaev Superconductor Model
2. Do real-space Renormalisation Group
3. Obtain RG equation for coupling parameter
4. Identify the number of repetition of RG to extra radial direction
5. Plug RG solution for coupling parameter to the partition function
6. Dirac equation in curved spacetime in two dimensions
7. Embed two dimensional spacetime to three dimensions
Process

1. Map the transverse-field Ising model to Kitaev Superconductor Model
2. Do real-space Renormalisation Group
3. Obtain RG equation for coupling parameter
4. Identify the number of repetition of RG to extra radial direction
5. **Plug RG solution for coupling parameter to the partition function**
6. Dirac equation in curved spacetime in two dimensions
7. **Embed two dimensional spacetime to three dimensions**
The transverse-field Ising model

\[H = -\frac{J}{2} \sum_{i=1}^{N} \left(\sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^x \right) \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field.
The transverse-field Ising model

\[H = -\frac{J}{2} \sum_{i=1}^{N} \left(\sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^x \right) \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field. This Hamiltonian enjoys \(\mathbb{Z}_2 \) symmetry and shows a quantum phase transition at zero temperature:

- \(\langle \sigma_i^z \rangle \neq 0 \) ferromagnetic phase for \(\lambda < \lambda_c \)
- \(\langle \sigma_i^z \rangle = 0 \) paramagnetic phase for \(\lambda > \lambda_c \)
The transverse-field Ising model

\[H = -\frac{J}{2} \sum_{i=1}^{N} \left(\sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^x \right) \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field.

Jordan-Wigner transformation

\[\sigma_i^x = 2c_i^\dagger c_i - 1, \quad \sigma_i^z = (-1)^{i-1} e^{\pm i\pi \sum_{j=1}^{i-1} c_j^\dagger c_j} (c_i^\dagger + c_i) \]

where \(c_i \) is a spinless fermion field.
The transverse-field Ising model

\[H = -\frac{J}{2} \sum_{i=1}^{N} (\sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^x) = -\frac{1}{2} \sum_{i=1}^{N} \left[J\lambda(2c_i^\dagger c_i - 1) + J(c_i^\dagger c_{i+1} + c_{i+1} c_i + h.c.) \right] \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field.

Jordan-Wigner transformation

\[\sigma_i^x = 2c_i^\dagger c_i - 1, \quad \sigma_i^z = (-1)^{i-1} e^{\pm i\pi \sum_{j=1}^{i-1} c_j^\dagger c_j} (c_i^\dagger + c_i) \]

where \(c_i \) is a spinless fermion field.
The transverse-field Ising model

\[H = -\frac{J}{2} \sum_{i=1}^{N} \left(\sigma_i^x \sigma_{i+1}^x + \lambda \sigma_i^z \right) = -\frac{1}{2} \sum_{i=1}^{N} \left[J \lambda (2c_i + c_i - 1) + J(c_i c_{i+1} + c_{i+1} c_i + h.c.) \right] \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field.

Jordan-Wigner transformation

\[\sigma_i^x = 2c_i^\dagger c_i - 1, \quad \sigma_i^z = (-1)^{i-1} e^{\pm i\pi \sum_{j=1}^{i-1} c_j^\dagger c_j} (c_i^\dagger + c_i) \] \hspace{1cm} (1)

where \(c_i \) is a spinless fermion field.

Majorana Decomposition

\[\gamma_i = c_i + c_i^\dagger, \quad \tilde{\gamma}_i = i(c_i - c_i^\dagger) \] \hspace{1cm} (2)
The transverse-field Ising model

\[H = 2i \left(\sum_{i=1}^{N} t_1 \gamma_i \tilde{\gamma}_i + t_2 \tilde{\gamma}_i \gamma_{i+1} \right) \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field.

Jordan-Wigner transformation

\[\sigma_i^x = 2c_i^\dagger c_i - 1, \quad \sigma_i^z = (-1)^{i-1} e^{\pm i\pi} \sum_{j=1}^{i-1} c_j^\dagger c_j (c_i^\dagger + c_i) \]

where \(c_i \) is a spinless fermion field.

Majorana Decomposition

\[\gamma_i = c_i + c_i^\dagger, \quad \tilde{\gamma}_i = i(c_i - c_i^\dagger) \]
The transverse-field Ising model

\[H = 2i \left(\sum_{i=1}^{N} t_1 \gamma_i \tilde{\gamma}_i + t_2 \tilde{\gamma}_i \gamma_{i+1} \right) \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field.

Jordan-Wigner transformation

\[\sigma_i^x = 2c_i^{\dagger}c_i - 1, \quad \sigma_i^z = (-1)^{i-1} e^{\pm i\pi} \sum_{j=1}^{i-1} c_j^{\dagger} c_j (c_i^{\dagger} + c_i) \]

where \(c_i \) is a spinless fermion field.

Majorana Decomposition

\[\gamma_i = c_i + c_i^{\dagger}, \quad \tilde{\gamma}_i = i(c_i - c_i^{\dagger}) \]

Strong pairing phase trivial/Weak pairing phase topological superconductor
The transverse-field Ising model

\[H = 2i \left(\sum_{i=1}^{N} t_1 \gamma_i \tilde{\gamma}_i + t_2 \tilde{\gamma}_i \gamma_{i+1} \right) \]

where \(J \) is a ferromagnetic coupling constant and \(\lambda \) is a transverse magnetic field.

Jordan-Wigner transformation

\[\sigma^x_i = 2c_i^\dagger c_i - 1, \quad \sigma^z_i = (-1)^{i-1} e^{\pm i\pi} \sum_{j=1}^{i-1} c_j^\dagger c_j (c_i^\dagger + c_i) \]

where \(c_i \) is a spinless fermion field.

Majorana Decomposition

\[\gamma_i = c_i + c_i^\dagger, \quad \tilde{\gamma}_i = i(c_i - c_i^\dagger) \]

Strong pairing phase trivial/Weak pairing phase topological superconductor
Real-Space Renormalisation

- Employ Nambu-spinor representation
Employ Nambu-spinor representation

\[\psi_i = \begin{pmatrix} c_i \\ c_i^\dagger \end{pmatrix} \]
We begin with the effective renormalised partition function after the $(k-1)$th RG tr.

1. separate the site index into even and odd
2. perform the gaussian integration for odd-site
3. rescale the fermion field to reproduce the original lattice

Employ Nambu-spinor representation

$$
\psi_i = \begin{pmatrix}
c_i \\
c_i^\dagger
\end{pmatrix}
$$

$$
Z = \int \prod_{i=1}^N D\psi_i \exp \left[- \int_0^\beta d\tau \sum_{i=1}^N \left\{ \psi_i^\dagger \left(\partial_\tau I + J \lambda \tau_3 \right) \psi_i - J \psi_i^\dagger \left(\tau_3 - i \tau_2 \right) \psi_{i+1} \right\} \right]
$$
Real-Space Renormalisation

Employ Nambu-spinor representation

\[Z = \int \prod_{i=1}^{N} D\psi_i \exp \left[- \int_0^\beta d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger \left(\partial_\tau I + J\lambda \tau_3 \right) \psi_i - J\psi_i^\dagger \left(\tau_3 - i\tau_2 \right) \psi_{i+1} \right\} \right] \]

We begin with the effective renormalised partition function after the \((k - 1)^{th}\) RG tr.

\[Z_{k-1} = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k-1}{2} \ln \left(-i\omega I + J\lambda \tau_3 \right) \right\} \int \prod_{i=1}^{N} D\psi_i^{(k-1)} \]

\[\exp \left[- \sum_{i\omega} \sum_{i=1}^{N} \left\{ \psi_i^{(k-1)\dagger} \left(-i\omega I + J\lambda \tau_3 \right) \psi_i^{(k-1)} - J_{k-1} \psi_{i+1}^{(k-1)\dagger} \left(\tau_3 - i\tau_2 \right) \psi_i^{(k-1)} \right\} \right] \]
Real-Space Renormalisation

- Employ Nambu-spinor representation

\[
Z = \int \prod_{i=1}^{N} D\psi_i \exp \left[- \int_{0}^{\beta} d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger \left(\partial_\tau I + J\lambda \tau_3 \right) \psi_i - J\psi_i^\dagger \left(\tau_3 - i\tau_2 \right) \psi_{i+1} \right\} \right]
\]

We begin with the effective renormalised partition function after the \((k - 1)^{th}\) RG tr.

\[
Z_{k-1} = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k - 1}{2} \ln \left(- i\omega I + J\lambda \tau_3 \right) \right\} \int \prod_{i=1}^{N} D\psi_i^{(k-1)}
\]

\[
\exp \left[- \sum_{i\omega} \sum_{i=1}^{N} \left\{ \psi_i^{(k-1)^\dagger} \left(- i\omega I + J\lambda \tau_3 \right) \psi_i^{(k-1)} - J_{k-1} \psi_{i+1}^{(k-1)^\dagger} \left(\tau_3 - i\tau_2 \right) \psi_i^{(k-1)} \right\} \right]
\]

1. separate the site index into even and odd
Real-Space Renormalisation

Employ Nambu-spinor representation

\[Z = \int \Pi_{i=1}^{N} D\psi_i \exp \left[- \int_0^\beta d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger \left(\partial_\tau I + J_3 \tau_3 \right) \psi_i - J_3 \psi_i^\dagger \left(\tau_3 - i\tau_2 \right) \psi_{i+1} \right\} \right] \]

We begin with the effective renormalised partition function after the \((k - 1)\)th RG tr.

\[Z_{k-1} = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k - 1}{2} \ln \left(- i\omega I + J_3 \tau_3 \right) \right\} \int \Pi_{i=1}^{N} D\psi_i^{(k-1)} \]

\[\exp \left[- \sum_{i\omega} \sum_{i=1}^{N} \left\{ \psi_i^{(k-1)}^\dagger \left(- i\omega I + J_3 \tau_3 \right) \psi_i^{(k-1)} - J_{k-1} \psi_i^{(k-1)}^\dagger \left(\tau_3 - i\tau_2 \right) \psi_i^{(k-1)} \right\} \right] \]

1. separate the site index into even and odd
2. perform the gaussian integration for odd-site
Real-Space Renormalisation

- **Employ Nambu-spinor representation**

\[
Z = \int \prod_{i=1}^{N} D\psi_i \exp \left[-\int_0^\beta d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger \left(\partial_\tau - iJ_3 \right) \psi_i - J\psi_i^\dagger \left(\tau_3 - i\tau_2 \right) \psi_{i+1} \right\} \right]
\]

We begin with the effective renormalised partition function after the \((k-1)^{th}\) RG tr.

\[
Z_{k-1} = \exp \left\{ \sum_{i}\sum_{\omega} \sum_{i=1}^{N} \frac{k-1}{2} \ln \left(-i\omega - iJ_3 \right) \right\} \int \prod_{i=1}^{N} D\psi_i^{(k-1)}
\]

\[
\exp \left[-\sum_{i}\sum_{\omega} \sum_{i=1}^{N} \left\{ \psi_i^{(k-1)\dagger} \left(-i\omega - iJ_3 \right) \psi_i^{(k-1)} - J_{k-1}\psi_{i+1}^{(k-1)\dagger} \left(\tau_3 - i\tau_2 \right) \psi_i^{(k-1)} \right\} \right]
\]

1. separate the site index into even and odd
2. perform the gaussian integration for odd-site
3. rescale the fermion field to reproduce the original lattice
Real-Space Renormalisation

- Employ Nambu-spinor representation

\[Z = \int \prod_{i=1}^{N} D\psi_i \exp \left[- \int_0^\beta d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger \left(\partial_\tau I + J\lambda\tau_3 \right) \psi_i - J\psi_i^\dagger \left(\tau_3 - i\tau_2 \right) \psi_{i+1} \right\} \right] \]

We begin with the effective renormalised partition function after the \((k - 1)^{th}\) RG tr.

1. separate the site index into even and odd

\[Z_{k-1} = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k - 1}{2} \ln \left(-i\omega l + J\lambda\tau_3 \right) \right\} \int \prod_{i=1}^{N/2} D\psi_{i+}^{(k-1)} D\psi_{i-}^{(k-1)} \]

\[\exp \left[- \sum_{i\omega} \sum_{i=1}^{N/2} \left\{ \psi_{i+}^{(k-1)\dagger} \left(-i\omega l + J\lambda\tau_3 \right) \psi_{i+}^{(k-1)} + \psi_{i-}^{(k-1)\dagger} \left(-i\omega l + J\lambda\tau_3 \right) \psi_{i-}^{(k-1)} \right. \right. \]

\[\left. \left. - J_{k-1} \psi_{i-}^{(k-1)\dagger} \left(\tau_3 - i\tau_2 \right) \psi_{i+}^{(k-1)} - J_{k-1} \psi_{i+1+}^{(k-1)\dagger} \left(\tau_3 - i\tau_2 \right) \psi_{i-}^{(k-1)} \right\} \right] \quad (3) \]

2. perform the gaussian integration for odd-site

3. rescale the fermion field to reproduce the original lattice
Real-Space Renormalisation

- Employ Nambu-spinor representation

\[
Z = \int \prod_{i=1}^{N} D\psi_i \exp \left[- \int_0^\beta d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger \left(\partial_\tau I + J\lambda \tau_3 \right) \psi_i - J\psi_i^\dagger \left(\tau_3 - i\tau_2 \right) \psi_{i+1} \right\} \right]
\]

We begin with the effective renormalised partition function after the \((k - 1)^{th}\) RG tr.

1. separate the site index into even and odd
2. perform the gaussian integration for odd-site

\[
Z_k = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k - 1}{2} \ln \left(-i\omega I + J\lambda \tau_3 \right) + \sum_{i\omega} \sum_{i=1}^{N/2} \ln \left(-i\omega I + J\lambda \tau_3 \right) \right\}
\]

\[
\int \prod_{i=1}^{N/2} D\psi_{i+}^{(k-1)} \exp \left[- \sum_{i\omega} \sum_{i=1}^{N/2} \left\{ \psi_{i+}^{(k-1)\dagger} \left(-i\omega I + J\lambda \tau_3 \right) \psi_{i+}^{(k-1)} \right. \right.
\]

\[
- \frac{-2J_{k-1}^2 J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} \psi_{i+1+}^{(k-1)\dagger} \left(\tau_3 - i\tau_2 \right) \psi_{i+}^{(k-1)} \right\] \]

3. rescale the fermion field to reproduce the original lattice
Real-Space Renormalisation

Employ Nambu-spinor representation

\[Z = \int \prod_{i=1}^{N} D\psi_i \exp \left[- \int_{0}^{\beta} d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger \left(\partial_\tau I + J \lambda \tau_3 \right) \psi_i - J \psi_i^\dagger \left(\tau_3 - i \tau_2 \right) \psi_{i+1} \right\} \right] \]

We begin with the effective renormalised partition function after the \((k - 1)^{th}\) RG tr.

1. separate the site index into even and odd
2. perform the gaussian integration for odd-site
3. rescale the fermion field to reproduce the original lattice

\[Z_k = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k}{2} \ln \left(-i\omega I + J \lambda \tau_3 \right) \right\} \int \prod_{i=1}^{N} D\psi_i^{(k)} \exp \left[- \sum_{i\omega} \sum_{i=1}^{N} \left\{ \psi_i^{(k)}^\dagger \left(-i\omega I + J \lambda \tau_3 \right) \psi_i^{(k)} - \frac{-2J_{k-1}^2 J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} \psi_i^{(k)}^\dagger \left(\tau_3 - i \tau_2 \right) \psi_i^{(k)} \right\} \right] \]
Real-Space Renormalisation

Employ Nambu-spinor representation

$$Z = \int \prod_{i=1}^{N} D\psi_i \exp \left[-\int_0^\beta d\tau \sum_{i=1}^{N} \left\{ \psi_i^\dagger (\partial_\tau I + J\lambda \tau_3) \psi_i - J\psi_i^\dagger (\tau_3 - i\tau_2) \psi_{i+1} \right\} \right]$$

We begin with the effective renormalised partition function after the \((k - 1)^{th}\) RG tr.

$$Z_{k-1} = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k - 1}{2} \ln \left(-i\omega I + J\lambda \tau_3 \right) \right\} \int \prod_{i=1}^{N} D\psi_i^{(k-1)}$$

$$\exp \left[-\sum_{i\omega} \sum_{i=1}^{N} \left\{ \psi_i^{(k-1)\dagger} \left(-i\omega I + J\lambda \tau_3 \right) \psi_i^{(k-1)} - J_{k-1} \psi_{i+1}^{(k-1)\dagger} \left(\tau_3 - i\tau_2 \right) \psi_i^{(k-1)} \right\} \right]$$

1. separate the site index into even and odd
2. perform the gaussian integration for odd-site
3. rescale the fermion field to reproduce the original lattice

$$Z_k = \exp \left\{ \sum_{i\omega} \sum_{i=1}^{N} \frac{k}{2} \ln \left(-i\omega I + J\lambda \tau_3 \right) \right\} \int \prod_{i=1}^{N} D\psi_i^{(k)} \exp \left[-\sum_{i\omega} \sum_{i=1}^{N} \right. $$

$$\left\{ \psi_i^{(k)\dagger} \left(-i\omega I + J\lambda \tau_3 \right) \psi_i^{(k)} - \frac{-2J_{k-1}^2 J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} \psi_{i+1}^{(k)\dagger} \left(\tau_3 - i\tau_2 \right) \psi_i^{(k)} \right\} \right]$$
RG equation for coupling parameter and extra radial direction

RG equation becomes

\[\frac{J_k}{J_{k-1}} = -2J_{\lambda}(\omega - J_{\lambda})(\omega + J_{\lambda})J_2^2, \]

\[J_k - J_{k-1} = -J_{k-1} + -2J_{\lambda}(\omega - J_{\lambda})(\omega + J_{\lambda})J_2^2. \]

Taking \(k-1 \rightarrow z_a \) and \(k \rightarrow z + dz_a \), (where \(a \) is an ultraviolet (UV) energy scale, set to be \(a = 1 \) for simplicity)

\[\int dJ(\omega, r) = -J(\omega, r) + 2J_{\lambda}(J_{\lambda}^2 + \omega^2) \]

\[J(\omega, r) \]

IR action turns to

\[S^{\text{IR}}(\Lambda) \approx \int \beta_0 d\tau \int L_0 dx \psi^\dagger(x, \tau, \Lambda) \{ \partial_\tau I + J(\lambda) \[1 - \left(\frac{\lambda}{2} \right) \] e^{\Lambda} \[1 - \left(\frac{\lambda}{2} \right) \] e^{\Lambda - 1 - \lambda/2} \]

\[- \lambda/2 \] \[\partial_2 x \] \[\tau^3 \] + \[1 - \left(\frac{\lambda}{2} \right) \] \[e^{\Lambda} \] (\[-i \partial x \]) \[\tau \] \[1 - \left(\frac{\lambda}{2} \right) \] \[e^{\Lambda} \]

\[\psi(x, \tau, \Lambda) \]
RG equation for coupling parameter and extra radial direction

- RG equation becomes

\[J_k = \frac{-2J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} J_{k-1}^2, \]
RG equation for coupling parameter and extra radial direction

RG equation becomes

\[
J_k = \frac{-2J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} J_{k-1}^2,
\]

\[
\frac{J_k - J_{k-1}}{k - (k - 1)} = -J_{k-1} + \frac{-2J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} J_{k-1}^2
\]
RG equation for coupling parameter and extra radial direction

RG equation becomes

\[J_k = \frac{-2J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} J_{k-1}^2, \]

\[\frac{J_k - J_{k-1}}{k - (k-1)} = -J_{k-1} + \frac{-2J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} J_{k-1}^2 \]

Taking \(k - 1 \rightarrow \frac{z}{a} \) and \(k \rightarrow \frac{z + dz}{a} \),

(where \(a \) is an ultraviolet (UV) energy scale, set to be \(a = 1 \) for simplicity)

\[\frac{dJ(i\omega, r)}{dr} = -J(i\omega, r) + \frac{2J\lambda}{(J\lambda)^2 + \omega^2} [J(i\omega, r)]^2 \] \((3) \)
RG equation for coupling parameter and extra radial direction

\[J_k = \frac{-2J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} J_{k-1}^2, \]

\[\frac{J_k - J_{k-1}}{k - (k - 1)} = -J_{k-1} + \frac{-2J\lambda}{(-i\omega + J\lambda)(-i\omega - J\lambda)} J_{k-1}^2 \]

Taking \(k - 1 \to \frac{z}{a} \) and \(k \to \frac{z + dz}{a} \),

(\text{where } a \text{ is an ultraviolet (UV) energy scale, set to be } a = 1 \text{ for simplicity})

\[
\frac{dJ(i\omega, r)}{dr} = -J(i\omega, r) + \frac{2J\lambda}{(J\lambda)^2 + \omega^2 [J(i\omega, r)]^2} \quad (3)
\]

IR action turns to

\[
S_{IR}(\Lambda) \approx \int_0^\beta d\tau \int_0^L dx \psi^\dagger(x, \tau, \Lambda) \left\{ \partial_\tau I + J \left(\frac{\lambda[1 - (\lambda/2)]e^\Lambda}{[1 - (\lambda/2)]e^\Lambda - 1} \right) \psi \right\}
\]

\[
- \frac{\lambda/2}{1 - [1 - (\lambda/2)]e^\Lambda \partial_x^2} \tau_3 + \frac{J\lambda}{1 - [1 - (\lambda/2)]e^\Lambda} (-i\partial_x) \tau_1 \psi(x, \tau, \Lambda)
\]
two dimensional Dirac equation in the curved spacetime as follows

\[ds^2 = -e^{-2A(x)} dt^2 + e^{-2B(x)} dx^2, \]

\[\left(i\partial_t + \frac{i}{2} A'(x)e^{B(x)-A(x)}\sigma_x + ie^{B(x)-A(x)}\sigma_x \partial_x - e^{-A(x)}\sigma_z m \right) \psi = 0 \]
two dimensional Dirac equation in the curved spacetime as follows
\[ds^2 = -e^{-2A(x)} dt^2 + e^{-2B(x)} dx^2, \]
\[\left(i \partial_t + \frac{i}{2} A'(x) e^{B(x)-A(x)} \sigma_x + ie^{B(x)-A(x)} \sigma_x \partial_x - e^{-A(x)} \sigma_z m \right) \psi = 0 \]

compare above with the previous action \(S_{IR} \)
two dimensional Dirac equation in the curved spacetime as follows

\[ds^2 = -e^{-2A(x)} dt^2 + e^{-2B(x)} dx^2, \]

\[\left(i\partial_t + \frac{i}{2} A'(x) e^{B(x)-A(x)} \sigma_x + ie^{B(x)-A(x)} \sigma_x \partial_x - e^{-A(x)} \sigma_z m \right) \psi = 0 \]

compare above with the previous action \(S_{IR} \Rightarrow A \) and \(B \) are determined
two dimensional Dirac equation in the curved spacetime as follows
\[ds^2 = -e^{-2A(x)}dt^2 + e^{-2B(x)}dx^2, \]
\[\left(i\partial_t + \frac{i}{2}A'(x)e^{B(x)-A(x)}\sigma_x + ie^{B(x)-A(x)}\sigma_x\partial_x - e^{-A(x)}\sigma_z m \right)\psi = 0 \]

compare above with the previous action \(S_{IR} \Rightarrow A \) and \(B \) are determined

embedding this into three dimensional spacetime
\[ds^2 = -e^{-2A}dt^2 + e^{-2B}dx^2 + e^{-2C}dr^2 \]
two dimensional Dirac equation in the curved spacetime as follows
\[
\begin{align*}
&ds^2 = -e^{-2A(x)} dt^2 + e^{-2B(x)} dx^2, \\
&(i\partial_t + \frac{i}{2} A'(x) e^{B(x)-A(x)} \sigma_x + i e^{B(x)-A(x)} \sigma_x \partial_x - e^{-A(x)} \sigma_z m) \psi = 0
\end{align*}
\]

compare above with the previous action \(S_{IR} \Rightarrow A \) and \(B \) are determined

embedding this into three dimensional spacetime
\[
ds^2 = -e^{-2A} dt^2 + e^{-2B} dx^2 + e^{-2C} dr^2
\]

consider a following choice : \(\sqrt{-\det g(\Lambda)} = \sqrt{e^{-2(\Lambda+B+C)}} = e^{-\gamma} \)
two dimensional Dirac equation in the curved spacetime as follows
\[ds^2 = -e^{-2A(x)} dt^2 + e^{-2B(x)} dx^2, \] (4)
\[\left(i\partial_t + \frac{i}{2} A'(x) e^{B(x) - A(x)} \sigma_x + ie^{B(x) - A(x)} \sigma_x \partial_x - e^{-A(x)} \sigma_z m \right) \psi = 0 \] (5)

compare above with the previous action \(S_{IR} \Rightarrow A \) and \(B \) are determined

embedding this into three dimensional spacetime
\[ds^2 = -e^{-2A} dt^2 + e^{-2B} dx^2 + e^{-2C} dr^2 \] (6)

consider a following choice : \(\sqrt{-\det g(\Lambda)} = \sqrt{e^{-2(A+B+C)}} = e^{-\mathcal{Y}} \)
\[g_{tt} = \frac{J^2(\lambda - 2)^2}{m^2} \left(1 - \frac{2}{\lambda} + \frac{2}{\lambda} e^{-\Lambda} \right)^{-2}, \] (7)
\[g_{xx} = \frac{(\lambda - 2)^2}{m^2} e^{2\Lambda}, \] (8)
\[g_{rr} = \frac{4m^4}{J^2(\lambda - 2)^4} \left(1 - \frac{2}{\lambda} + \frac{2}{\lambda} e^{-\Lambda} \right)^2 e^{-2\Lambda-2\mathcal{Y}}. \] (9)

Hereafter, we take \(e^\Lambda = r \) and \(\mathcal{Y} = -2\Lambda \)
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

$$ds^2 = -\frac{J^2 \lambda^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt^2 + \frac{\lambda^2}{m^2} r^2 dx^2 + \frac{4m^4}{J^2 \lambda^4} \frac{(|\lambda'| + \frac{2}{r})^2}{(|\lambda'| + 2)^2} dr^2$$

(10)
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

$$ds^2 = -\frac{J^2 \lambda'^2}{m^2} \left(\frac{|\lambda'| + 2}{\lambda'} \right)^2 dt^2 + \frac{\lambda'^2}{m^2} r^2 dx^2 + \frac{4m^4}{J^2 \lambda'^4} \left(\frac{|\lambda'| + 2}{r} \right)^2 dr^2$$ \hspace{1cm} (10)

- at quantum critical point $(\lambda = \lambda_c = 2 \text{ or } \lambda' = 0)$,
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

$$ds^2 = -\frac{J^2 \lambda'^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt^2 + \frac{\lambda'^2}{m^2} r^2 dx^2 + \frac{4m^4}{J^2 \lambda'^4} \frac{(|\lambda'| + \frac{2}{r})^2}{(|\lambda'| + 2)^2} dr^2 \quad (10)$$

- at quantum critical point ($\lambda = \lambda_c = 2$ or $\lambda' = 0$),
 natural to assume $\frac{m^4}{J^2 (\lambda - 2)^2} \sim 1$, and so we set
 $$m^2 = \mathcal{F} J (\lambda - 2)^2 \quad (11)$$
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

$$ds^2 = -\frac{J^2 \lambda'^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt^2 + \frac{\lambda'^2}{m^2} r^2 dx^2 + \frac{4m^4}{J^2 \lambda'^4} \frac{(|\lambda'| + \frac{2}{r})^2}{(|\lambda'| + 2)^2} dr^2$$ \hspace{1cm} (10)

- **at quantum critical point** ($\lambda = \lambda_c = 2$ or $\lambda' = 0$),
 natural to assume $\frac{m^4}{J^2(\lambda - 2)^2} \sim 1$, and so we set

$$m^2 = \mathcal{F} J(\lambda - 2)^2$$ \hspace{1cm} (11)

Taking the limit of $\lambda \to \lambda_c = 2$
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

$$ds^2 = -\frac{J^2 \lambda'^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt^2 + \frac{\lambda'^2}{m^2} r^2 dx^2 + \frac{4m^4}{J^2 \lambda'^4} \frac{(|\lambda'| + \frac{2}{r})^2}{(|\lambda'| + 2)^2} dr^2 \quad (10)$$

➤ **at quantum critical point** ($\lambda = \lambda_c = 2$ or $\lambda' = 0$),

natural to assume $\frac{m^4}{J^2(\lambda - 2)^2} \sim 1$, and so we set

$$m^2 = \mathcal{F} J (\lambda - 2)^2 \quad (11)$$

Taking the limit of $\lambda \to \lambda_c = 2$

$$ds^2 = -\frac{r^2}{4\mathcal{F}^2} dt'^2 + \frac{r^2}{4\mathcal{F}^2} dx'^2 + \frac{4\mathcal{F}^{-2}}{r^2} dr^2 \quad (12)$$
Replacing \(\lambda - 2 = |\lambda'| \) so that \(\lambda - 2 = \lambda' \) for \(\lambda > 2 \) and \(\lambda - 2 = -\lambda' \) for \(\lambda < 2 \)

\[
ds^2 = -\frac{J^2 \lambda'^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt^2 + \frac{\lambda'^2}{m^2} r^2 dx^2 + \frac{4m^4}{J^2 \lambda'^4} \frac{(|\lambda'| + \frac{2}{r})^2}{(|\lambda'| + 2)^2} dr^2
\]

(10)

- **at quantum critical point** (\(\lambda = \lambda_c = 2 \) or \(\lambda' = 0 \)),
 natural to assume \(\frac{m^4}{J^2(\lambda - 2)^2} \sim 1 \), and so we set

\[
m^2 = \mathcal{F}J(\lambda - 2)^2
\]

(11)

Taking the limit of \(\lambda \to \lambda_c = 2 \)

\[
ds^2 = -\frac{r^2}{4\mathcal{F}^2} dt'^2 + \frac{r^2}{4\mathcal{F}^2} dx'^2 + \frac{4\mathcal{F}^{-2}}{r^2} dr^2
\]

(12)

- **non-topological**(\(\lambda' > 0 \)) and **topological**(\(\lambda' < 0 \)) superconducting phase
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

\[ds^2 = -\frac{J^2 \lambda'^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt'^2 + \frac{\lambda'^2}{m^2} r^2 dx'^2 + \frac{4m^4 \lambda'^4}{J^2 \lambda'^4} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + 2)^2} dr'^2 \quad (10) \]

- **at quantum critical point** ($\lambda = \lambda_c = 2$ or $\lambda' = 0$),
 natural to assume $\frac{m^4}{J^2 (\lambda - 2)^2} \sim 1$, and so we set

\[m^2 = \mathcal{F} J (\lambda - 2)^2 \quad (11) \]

Taking the limit of $\lambda \to \lambda_c = 2$

\[ds^2 = -\frac{r^2}{4\mathcal{F}^2} dt'^2 + \frac{r^2}{4\mathcal{F}^2} dx'^2 + \frac{4\mathcal{F}^2}{r^2} dr'^2 \quad (12) \]

- **non-topological ($\lambda' > 0$) and topological ($\lambda' < 0$) superconducting phase**

\[(r \to \infty) \quad ds^2 \approx -dt'^2 + r'^2 dx'^2 + dr'^2, \]
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

$$ds^2 = -\frac{J^2 \lambda'^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt'^2 + \frac{\lambda'^2}{m^2} r^2 dx'^2 + \frac{4m^4}{J^2 \lambda'^4} \frac{(|\lambda'| + \frac{2}{r})^2}{(|\lambda'| + 2)^2} dr'^2$$

(10)

- **at quantum critical point** ($\lambda = \lambda_c = 2$ or $\lambda' = 0$),
 natural to assume $\frac{m^4}{J^2(\lambda - 2)^2} \sim 1$, and so we set

$$m^2 = \mathcal{F}J(\lambda - 2)^2$$

(11)

Taking the limit of $\lambda \to \lambda_c = 2$

$$ds^2 = -\frac{r^2}{4\mathcal{F}^2} dt'^2 + \frac{r^2}{4\mathcal{F}^2} dx'^2 + \frac{4\mathcal{F}^{-2}}{r^2} dr'^2$$

(12)

- **non-topological**($\lambda' > 0$) and **topological**($\lambda' < 0$) superconducting phase

 $$(r \to \infty) \quad ds^2 \approx -dt'^2 + r'^2 dx'^2 + dr'^2,$$

 $$R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu} = \frac{6a^4 \lambda'^8 (\lambda'^2 r^2 + 2)}{m^8(|\lambda'|r + 2)^8}$$
Replacing $\lambda - 2 = |\lambda'|$ so that $\lambda - 2 = \lambda'$ for $\lambda > 2$ and $\lambda - 2 = -\lambda'$ for $\lambda < 2$

$$ds^2 = -\frac{J^2 \lambda'^2}{m^2} \frac{(|\lambda'| + 2)^2}{(|\lambda'| + \frac{2}{r})^2} dt^2 + \frac{\lambda'^2}{m^2} r^2 dx^2 + \frac{4m^4}{J^2 \lambda'^4} \frac{(|\lambda'| + \frac{2}{r})^2}{(|\lambda'| + 2)^2} dr^2$$ \hspace{1cm} (10)

\[\textbf{at quantum critical point} \ (\lambda = \lambda_c = 2 \text{ or } \lambda' = 0), \]

natural to assume $\frac{m^4}{J^2(\lambda-2)^2} \sim 1$, and so we set

$$m^2 = F J (\lambda - 2)^2$$ \hspace{1cm} (11)

Taking the limit of $\lambda \to \lambda_c = 2$

$$ds^2 = - \frac{r^2}{4F^2} dt'^2 + \frac{r^2}{4F^2} dx'^2 + \frac{4F^{-2}}{r^2} dr^2$$ \hspace{1cm} (12)

\[\textbf{non-topological}(\lambda' > 0) \text{ and topological}(\lambda' < 0) \text{ superconducting phase} \]

$$(r \to \infty) \quad ds^2 \approx -dt'^2 + r'^2 dx'^2 + dr'^2,$$

$$R^{\alpha\beta\mu\nu} R_{\alpha\beta\mu\nu} = \frac{6a^4 \lambda'^8 (\lambda'^2 r^2 + 2)}{m^8 (|\lambda'| r + 2)^8} \sim \infty \text{ at } r = \frac{2}{\lambda'}$$
Since the metric is asymptotically flat, it should satisfy

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = T_{\mu\nu}$$ \hspace{1cm} (13)$$

and we found

$$T_{tt} = - \frac{J^4(|\lambda'| + 2)^4 \lambda'^6 r^2}{2m^6(|\lambda'|r + 2)^5} \quad (\sim 0, \quad r \to \infty)$$ \hspace{1cm} (14)$$

$$T_{rr} = \frac{2}{r^2(|\lambda'|r + 2)} \quad (\sim 0, \quad r \to \infty),$$ \hspace{1cm} (15)$$

$$T_{xx} = \frac{J^2(|\lambda'| + 2)^2(1 - r|\lambda'|)\lambda'^6 r^2}{m^6(|\lambda'|r + 2)^4} \quad (\sim 0, \quad r \to \infty)$$ \hspace{1cm} (16)$$
Summary and Future Work

▶ We constructed an emergent spacetime from the Kitaev superconductor model.
▶ An emergent spacetime description for the Kitaev model could be an order parameter for topological phase transition.
▶ Is there a natural way to have a constraint on radial component?
▶ How to characterize the topological property for the spacetime having a naked singularity which is $\lambda < \frac{2}{3}$ case?
▶ Dictionaries between a field theory and a bulk?
▶ We are also working on O(N) vector model, Kondo model, etc.
we constructed an emergent spacetime from the Kitaev superconductor model
Summary and Future Work

- we constructed an emergent spacetime from the Kitaev superconductor model
- emergent spacetime description for the Kitaev model could be an order parameter for topological phase transition
Summary and Future Work

- we constructed an emergent spacetime from the Kitaev superconductor model
- emergent spacetime description for the Kitaev model could be an order parameter for topological phase transition
- Is there a natural way to have a constraint on radial component?
we constructed an emergent spacetime from the Kitaev superconductor model
emergent spacetime description for the Kitaev model could be an order parameter for topological phase transition

Is there a natural way to have a constraint on radial component?
How to characterize the topological property for the spacetime having a naked singularity which is $\lambda < 2$ case?
Summary and Future Work

- we constructed an emergent spacetime from the Kitaev superconductor model
- emergent spacetime description for the Kitaev model could be an order parameter for topological phase transition
- Is there a natural way to have a constraint on radial component?
- How to characterize the topological property for the spacetime having a naked singularity which is $\lambda < 2$ case?
- dictionaries between a field theory and a bulk?
we constructed an emergent spacetime from the Kitaev superconductor model

emergent spacetime description for the Kitaev model could be an order parameter for topological phase transition

Is there a natural way to have a constraint on radial component?

How to characterize the topological property for the spacetime having a naked singularity which is $\lambda < 2$ case?

dictionaries between a field theory and a bulk?

We are also working on O(N) vector model, Kondo model.